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Dyon Solutions in Non-Temporalswessio Gauge

Vinod Singh and D C Joshi*

Abstract - Employing the Cabbibo—Ferrari type non- Abelian field tensor we consider the

SUE)®SUE) gauge theory under the non-temporal gauge

conditions and show that the obtained solutions are dyonic and have finite energy.

Index Term: Dyon Solutions, Non-Abilian Field Tensor, Gauge Field Theory

Introduction

In 1930s Dirac! advanced the idea that isolated magnetic
poles might exist. The idea of magnetic monopoles got a
boost in 1970s when "t Hooft? and Polyakov3 showed that in
gauge field theories in which the symmetry group is
spontaneously broken possess classical solutions with the
natural interpretation of magnetic monopoles. Soon the
Julia and Zee’st conjecture was seen as the non-Abelian
analogue of Schwinger’s Abelian dyons>. The interest on
monopoles and dyons generated by Dirac!, t Hooft?,
Polyakov? and Julia and Zee* has remained undiminished
and extensive theoretical and experimental works on the
related topics havebeen undertakené21.3,

Since, the solutions which were interpreted as magnetic
monopoles were originally found in SO@3) gauge group and
this group being small for unifying electromagnetic and
weak interactions, larger gauge groups like SU(3) were
exploreds12.223 | A key factor of such theories is the twin
combination of the choice of gauge and choice of gauge
field tensor. Theories have in general followed the
approach of Julia and Zee* and employed usual Yang-Mills
type field tensor and have used temporal gauge conditions
to arrive at monopole solutions and obtained dyon
solutions in non-temporal gauge.

In 1960s, Cabbibo and Ferrari** developed a two
potential field tensor for developing a theory of Abelian
dyons and Yang Mills type field tensor continued to be
used for dyon solutions in non-Abelian gauge theories.
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One of the authors (DCJ) has in earlier papers!! developed
a Cabbibo-Ferrari* type field tensor for non-Abelian fields
and employed’2® it on non-Abelian gauge theories with
electric and magnetic sources. Using the same field tensor
and the Kyriakopoulos22technique we show in the previous
paper that the dyon solutions be obtained in the temporal
gauge ¢b. The Kyriakopoulos @ technique under the
temporal gauge conditions reduced the gauge field
equations into the first order differential equations whose
solutions depicted a set of dyon solutions. Extending the
analysis in the present paper we examine theSU(3)®SU(3)

gauge under the non- temporal gauge conditions and find
that in this case too we obtain the finite energy dyon
solutions but unlike the previous case they emerge as the
solutions of second order differential equations. The paper
has been divided into six sections. Section 2 defines the
Lagrangian density, the gauge group of the theory, field
equations and matrix notation .The ansatz for obtaining the
solutions has been presented in section 3. The solutions
have been shown to have finite energy in section 4.the
adjoining solutions be obtained in section 5. That the
obtained solutions belong to electric and magnetic charges
has been shown in section 6 to which then follow the
concduding remarks.

2. The Gauge Group and the Lagrangian Density

In this section webriefly recapitulate the steps from the
previous paper @b,

The system whose gauge group is SUB)®SU(@3), is
described by the Lagrangian density

Lz—inw xG™ +%(Du¢)aX(D“¢)a+V(¢ax¢a) )

where®én
Gl =0,A1—0,A" —ef™APAS
15 (Bm —ovme

2 nvpo

and its dual

2a
_g fachpanc) ( )
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G, =0,B'~0, B ~g " BB

is (2b)
+15, (00 A= o7 Am_erarA)
2 uvpo
in which gauge fields A} and B; transform as
A, 5>UAU' - Lo U)u (3a)
e
a1 -
and B, »>UB,U" - g(a“U)U ! (3b)

where U is a gauge function

U =exp(-iA'T?) (4)

with A* the real functions of space-time and T°
representing the group generators of SU(3) group obeying

[T, T°]=if"T )

The f*care the SU(3) structure constants with a, b, ¢

a

running from 1 to 8. T* :%, where ¥ (@=1,2, ... 8) are

eight Gell-Mann matrices?.

The (x) in the Lagrangian density (1) indicates the
products in which the fields have been assumed mutually
non-interacting. As a result of this assumption the mutual
interaction terms, i.e. the cross-terms, disappear leaving

G, xG"™ = AL A" + B2 B 6)
(D,8)x(D*6)=(D}4: + Dio; (D0 +D*0;)
=D, ¢:D"¢; + D;¢;D*9; (7)

and ' x ¢’ =(07 + o7 )x (62 +92)

=0+, 0; ®)
where
A, = 6“A3 —0,A} —e fabCAEAs 9
and B, =%5WBW (10)
with

Bpoa — acha _acha _g fachpbBcc (
D) =0, —ef™A" (

D? =5, —gf"B (13)
and ¢" =¢; +¢, (

The covariant derivative D, ¢* which expressed as

(D,8)*=D;¢: +D¢; (15)
transform as
(D) - U(D,¢)* (16)

The potential energy V(d)a ><¢'°‘) in the Lagrangian
density (1) describe the self interaction of field (pa and has

the form

V(0" <07 )=-n(620¢ + 6207 —&7 (17)

in which n and ¢ arereal constants withn<<1. The

fields (pa may denote the Higgs?¢2” triplet fields.

The Euler-Lagrange variations of the Lagrangian
density (1) with respect to A}, B}, ¢ and ¢; lead to the

field equations

ap Auva_e fabcAEAuvc _efabcd)le)Dlvq)Z — O (1 8)
5PE”W’ g fachSEwc _gfabcd)gDsz); =0 (19)
0 DM —eFATD g — Y~ 20)
* BT
and 8 D*¢: —gf B D*¢¢ — v _ 1)
u 8 H 8 ad)ag
Introducing thenotation

A, =e AT (22a)
and B, =gBT* (22b)
and also express the Higgs field ¢ as
(I):(e+g)><(|)a"1"‘"‘Eecl)jj'l"‘"’+gq);Tf‘E(|>e+(l)g (22¢)

where Ta:%‘withka (a = 1,2,...8) the Gell-Mann

matrices (25), we may express the field equations (18) to
(21) in matrix notation as

0, A +i[A,, A]+i[¢,, D" ¢,]=0 23)

8, B"+i[B,,B"]+i[$,, D> ¢,]1=0 (24)

8,D" ¢, +i[A,, D" ¢C]—e2T¥T"‘ -0 (25)

0,D* ¢, +i[B, D* ¢g]—g;¥ T =0 26)
g

respectively. It is obvious from the above that!
3. The Ansatz

In the previous paper® the gauge field obeyed the
temporal gauge conditions and here temporal parts A, and
B, do not vanish we were required to have the ansatz 28

N AN A
oc:xlk7—x2k5+x3k2:a“?: aT?
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B= %Irz—Z&&
= 2(x1x2 XX A+ X6)+ [(xl)2 - (XZ)Z}»3

27

+[r2—3(x3)2]% @7)
where r=[(x1)2+(x2)2+(x3)2]%, x1, x2 and x3 being the
components of distance three-vector. We also introduce the

P=Va (28)
O N
Q==Vp (29)
2
R=X& (30)
S =xB (31)
T=-xxVa (31)
_ 1. ==~
U:*EXXVB (32)
and?
ATy - U (33)
r r
Ty _ U (34)
T T
Ay =—2G6+224 (35)
T T
B A SB QA
and B,=—a+—= (36)
r r

where T,,T,,U,,U, R,,S; R, S;are purely r
dependent.

The ansatz for the Higgs fields ¢, +¢, =¢ asbefore»

b =—2-d+—=p (37)
T T
N, . M, .
and ¢, = La+—=P (38)
T T

where the coefficients N and M too are purely r-
dependent. We also introduce the vector

4. Finite energy Solutions.

In earlier paper defined

A=(A%,A%,A"?) =P P+Q,Q+R,R+5,5 39)

B (E()l, Euz/ Eo3): (1323, B, B12) - 13313+ QBQ+ ﬁBﬁ+ ng (40)

where P,QR,S havebeen defined in equations (28) to
(30) and

B --2 (41)
T
2 2
B4R, = 1= Ta —Ua (42)
r
~ U’
Q.= (43)
r
& 4128, = 2Tala (44)
r
and
]51 o, = ~e41—°+ Qe4é+ lie41—?+ §e4§ =A, (45)
D, ¢, =D,,P+Q,,Q+R,R+5,,5=8, (46)
where
~ N, T,+M, U
P S S el 47)
T
~ ~ N’ —N
rzRe4+ ed = — 2 - (48)
r
- N U,+2M, T
= b — A - e ~A (49)
r
- ~ ™! - M
r28e4+ ed = — 3 - (50)

with similar relations with e >g and A —B.

As shown in the following subsection, the ansatz (33),
(34), (37) and (38) allow us to write the field equations (18)-
(21) in terms of field equations without SU (3) indices.

We use the same ansatz and notations as used in the
earlier paper@® for temporal gauge. We also employ the
ansatz for non temporal gauge®?

we can express the space-time component of A" and

B* ases
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Ay =(A Ay, Agy) = I’S[]Af)+ QUAQJ" I’ioAﬁ+ §OA§ (51)

Where
~ R, T,+25, U
Py =—2 Arz A= (52)
RIS LY (53)
T
~ R,U,+25, T
R (54)
5,4 Q=TT 5)
and
éo :(~23/i—5’13/Elz):(Berzo'Bso) (56)
:f’0313+QOBQ+I~{OBli+SOBS
where
~ R, T,+25, U
POB:M (57)
T
PRyt By = TR Ko (58)
r
~ R, U, +25. T
OB:% (59)
118y Qyy = 22050 (60)

r

Now we look at the field equations 3! (23) to26) and
separate their space and time components. Using
eqyuations (51) and (56) the respective space and
timecomponents of (23) and (24) can jbe expressed as

VxA+(Ax A+Ax A)-i[A, 7 ]1+ilo,,D'9,]=0(61)
VxB+(BxB+AxB)-i[B, @ |+ilh, D’9,1=0 (62)
vV A,-ilA A, - A,AI=0 (63)
and V@ -i[Bg - @ Bl=0 (64)

where Aand 8 are (39) and (40) for the space and time
parts of eqs (25)and (250, we observe their V = 0 and find
that, due to the static nature of fields and the ansatz (25)
and (26) vanish leaving the space parts as

IJSER © 2012

v(D'¢,) +1[A, 1514)6]: 0 (65)
v(D*,)+i[B, D%, |=0 (66)

Now we first look at the set of egs. (61), (62) and
(65) that contain the space parts A of the gauge field A, .

Using eqs (34) in these equations we can calculate the
individual terms as

2 2 "
Vx A== {_TA e et )}T " [Uf UL, }U (67a)
T

"
I'z r4 T

_ _ 2_ 2 2 -
+i(Ax§[—Ax.§l)={(l Tl 4TA Uy )—6TAPA}T

r T

S U (67b)
T

J{UA(I—TAZ -U,’) 6(1—TA)UATA}
5
T

2 2
ilA, 71 {TA R+ 4s$4 )+U,R,S, }T

(67¢)

: U

J{UA(RAZ +45,2)+T,R,S, }—
r

- T,(N, 2+4M, ?)+4U,N, M, _
+i[¢e’Dl¢e]:_ A( de ¢er4) A T 0
UA(Ntt»ez +4M¢ez)+4TAN¢eM¢e O

5

r

(674d)

VA, IMAA,~AAI=
{rZR”A -21,(T,R, +2U,S,)-2U,(U,R, +2U,S, )} a

r4

. [rzsA -3T,(U,R, + ZTASr ?)— 3U, (TR, + ZSAUA)} b (68)
v(D'9.)+i|A, D'y, =
PN/ -2T, (T,N, +2U,M, )-2U, (U,N, +2T,M, )} .
o
4

r

r

{rZMgE -31,(U,N, +2T,M, )-3U, (T,N, +2U,M, )} 5
5

(69)

Equation (61) is satisfied if the coefficients of
T,,U,,G and f are zero that gives the system of nonlinear

differential equations

P°T! -T, (T, +7U,% 1)+ T, (R > +4S,?)

70
+4R,U,S, ~T,(N, ? +4M, ?)-4U,N, M, =0 70)
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U, -U,(7T,> +U,* 1)+ U, (R > +4S,?)

71)
+4T,R,S, U, (N, ? +4M, *)-4T,N, M, =0

r’R’, —2R, (T,* +U,?)-8T,U,S, =0 (72)

r’s, -25,(T,> +U,*)-6T,U,R, =0 (73)

N7 —2N, (T,? +U,?)-8T,U,M, =0 (74)

"M —6M, (T,*+U,?)-6T,U,N, =0 (75)

Similarly egs (62),(64) and (66) give the system of
nonlinear differential equations

Ty T, (T2 + 70U, —1)+ T, (R,? +4S,?)

2 2 (76)
4R, U, S, ~T, [N, * +4M, *|-4U,N, M, =0

Ul - U, (7T, + U2 —1)+ U, (R, +4S,°)

2 2 77)
HT,R,S, - UyN, *+4M, *]-4T,N, M, =0
r°R!, — 2R, (T,? + U, )-8T,U,S, =0 (78)
r°S! —28,(T,2 + U2 )~ 6T,U,R,, =0 79)
Ny —2N, (T, +U,?)-8T,UM, =0 (80)
*M; —6M, (T,* +U,’)-6T,U,N, =0 (81)

above system of second order non-linear differential
equations (70) to(81) belong to the non-temporal gauge
conditions A} #0and B} #0 and the energy for this case is

calculated by using the energy- momentum tensor T** * as
m= Id3;(TOU = _‘-ds;( [Ggi x G + égl x égl + D" x Dy — L](SZ)

Using egs. (9) and (10) the above expression yields

m:deQBAgi AL +%A?k A3 +%D}¢2 D!¢? —V(¢:)}

83
d3* 15 a a 3 a a 1 21a 2 a (a) ( ))

+J X 1_6]30i BUi+§Bjk Bjk+EDi¢g Did)g_vd)g

Using eqn.(25)* we get
— 1 3z 1 1
m _—ZTrjd XAy Ay + A, A, +Dj¢, Dlo,
e

1 _[15 3
+;Trj'd3x[§ By By + By By + D;¢, D}¢, }

2 2

© 1_T2_U2 12T2U2
_gldr4ﬂ2(T;2+U;2)+( s ), o }

(rsL\ — SA )2

2

L4

r’ 3 T

. 2(T,R, +2U,S, )} +(U,R, +2T,S, \ }
I.2

2{ (R, —R, )

(rM;e - M¢e)2
rZ

2
r

+2{ (rN:te _N%)Z +

2

4
3
r

_ 2_ 2 2 2
4.%{2(T,;2+U’BZ)+ (1 TBrz Us )+12T*;ZUB }
(R, -R,f  4(5,-5,)
© 2 2
+4—T2E_[dr +2.E r 3 ) ! )
g’ 4 +2(TBRB+2UBSB) +(U,R, +2T,S,)
rZ
(rN;g ’N‘tg 4 (rM:tg ’M%)Z
2 + 5 2
+2 r f
N 2 (TBN% +2U M, )2 +(UBN¢8 +2TBM¢8)Z

rZ

(84)

thus our system in the gauge Aj #0and B #0, is now
described by the second order non-linear differential
equations (70) to (81) and the energy of this system is
expressed by eqn (95) . However, the energy diverges
atr >0. Therefore, to avoid the singularity at r >0, we
impose following boundary conditions .......In order to
avoid the terms becoming singular as r —0, the following
boundary conditions arerequired to be obeyed

U,(0)=+1=U,(0)

1

. 86
T, —=er'™, T,—=gr " (86a)

or

1+ 1+n
U, »Er ™, Up—=&1r™

r—0

1,(0)=+1-T,(0) (86b)

where §,& and n,n, are constants with n,m, >0. Thus

the energy (85) becomes finite when its parameters obey
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the boundary conditions (86). When these boundary
conditions are obeyed by the solutions of eqs (70) to (81),
the same would be the A? #0and B; #0,the finite energy
solutions. Thus our aim now is to obtain the solutions of
second order differential eqs (70) to (81) which obey
eqn.(86). For the above purpose if we let us put
T,=T,=F,=F =M, =M, =0, we find that out of the

twelve equations only the following six remain

U, -U,(U,2 +N, > ~R,> ~1)=0

87)
"R, —2R,U,2 =0 (88)
*N; ~2N, U,* =0 (89)
Uy~ U, (U, +N, =R’ ~1)=0 (90)
R} —2R,U,> =0 91)
’N; —2N, U,* =0 92)

It is interesting to note that the first three equation (87),
(88) and (89) exactly match the Prasad and Sommerfield
equations of motion.2 Similar matching exists for the egs.
(90) 91) and (92) as well and the solutions of these
equation comes out as 2

U, = ﬁ (93)
N, =+cosh0,(B, rcothp, r-1) (94)
R, =+sinh 6, (8, rcothB, r—1) (95)
U, :ﬁ (96)
N,, =*cosh 6, (BB rcothB, r— 1) 97)
R, = +sinh 6, (B, r coth B, r—1) (98)
T, =T, =M, =M, =S, =5,=0 (99)

where B, B; 6, and 6, are arbitrary constants . The finite

energy corresponding to these solutions is obtained by
substituting (93) to (98) above solutions when put in (85)
give

4 % 7
m=e7£4 rz dI' —2.([4: rz dl'
105 cos?e, + 190 p, cosh? 0, (100)
e’ g’

4. Electric and Magnetic Charge

In order to show that the obtained solutions (93) to
(99) having the finite energy (100), are dyon solutions in
non- temporal gauge, we shall calculate the electric and
magnetic charges. For that purpose we introduce the unit

vectors ¢ and &); defined by?s

Gpy = Fos & (101)

(@, 00, 2

From previous paper 3!

AR =L (1022)
and %siksika - éig;’ (102b)
We introduce the field 22

Al = %ﬂ; (103a)
and B, = éé; (103b)

The electric charge (, may now be calculated by
using egs. (102b) and (103a) ) as
1 2 a a
q.= EMQ Gids, (93) (104)
where G, can be had from eqn (2) and ds, denote the

surface element ¢?4he surface at infinity which is also the
boundary of the static fields

! j(q; —e B*]ds,

L A = Aai
_475'[(1)e e dsi+4n'[¢* g ds

a’o’ =4r?
1 a ROAxoc dsi+1 a Rxa ds,
T8t e 8n g
1 R, -R, 1 (1—U2)_
:%I%X.dSJF_.[—BX.dS
_428inh0, 2 (105)
e 8
The magnetic charge likewise is obtained
:_J.(I)g 2 llkGJkadS
[q; > qkA’ka+3Ba]ds
A . 34, B
= “—‘ds.+— @ 0 ds.
4ch¢5‘ e SRJq)“ g
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— 2 — ! a— —
:+iji'd5+ijwi'd5
2me r 4ng r
2, 3snhG, (106)
e 4g

Thus the obtained solutions are dyonic

solutions in  temporal  gauge  with  electric
charge+ 2nh8, (2 of  and  ma gnetic  charge
e g
3sinh 0
of 2+ > Vs
e 49

5. Adjoining Solutions

Equations (93) to (98) provide the non-temporal gauge
solutions in which both A} and B} were non-vanishing.

However, remaining in the realm of non-temporal gauge
conditions we can have particular case of (a) Aj =0 and
B: #0 and (b) A} #0and B} =0. Adopting the procedure
of previous sections, we show in the following that in these
particular cases of temporal gauge too, the obtained
solutions though are finite energy dyonic but are different
from the previous section.

Case (a) A} =0, B} #0

The vanishing of A; implies the vanishing of R, and
S,,accordingly the field equations (87)-(75) become
r’U, -U, (U2 +N, 2 -1)=0 (107)

’N; —-2N, U,*=0 (108)
rest egs.(91) — (94) remain same.

Since, the second order differential equations 107) to
(108) again match with those of Prasad and Sommerfield®,
the solutions in this case of A} =0, B; #0 are the solutions
of field equations (107), (108) and (90)-(92) which are
written as

Bur
U, =—ra- 109
* sinhf,r (109)
N, = £(B, rcothp, r—1) (110)
Bpr
Pl 111
® sinhBg,r (1)
N, =*cosh 6, (B, rcothp, r-1) (112)
Ry =xsinh 0, ([33 rcothf, r- 1) (113)

The energy of these solutions can alsobe calculated
from eqn. (85) by putting R, =0=5,, which will also

admit the boundary conditions (86) resulting in the
following expression of energy that would be finite

1 -
m :e—ZTrJ.dBX[ZA].k A,

1 ~| 15 3
+g_zTrId3X[§B0i B, +ZBik B, +D¢, Dio, } (114)

_32n

2
e

l6m
BA +g—2BB COSh2 GB

The electric and magnetic charges for this case can also
be calculated as

q == (115a)
g
_2,3dnh®, (115b)
& e 4g

Thus in the gaugeAj =0, B} #0, we have finite energy
dyon solutions (109)-(113) with finite energy (114) and
dyon charges (115).

Case (b) Aj #0, Bj =0

In this caseR;and S, vanish. The field equation (87)-

(89) remain same, whereas eqn. (90)-(92) after substituting
R; =0=S5; reduce to following two equations

Uy U, (U, 4N, 7 -1)=0 (116)
Ny ~2N, U,* =0 117)

Corresponding to Aj +#0, we shall have three equations

viz. (87), 88) and (89). The solutions of these five equations
yields

7L (118)
sinh B, r (109)

N,, :icoshGA(BArcothBAr—l) (119)

(110)

R, =+sinh 6, (B, rcothp, r-1) (120)
(111)

R L (121)

sinh By r
N,, =B, rcothp, r-1) (122)

IJSER © 2012
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where equations (121) and (122) are the Prasad- 14. JP Gauntlett, J A Harvey & JLiu, Nucl Phys B, 409 (1993)
Sommerfields? solutions of equations (116) and (117) and 363.

. . . 15. JSmit & A JSijj der ], Nucl Phys B, 422 (1994) 349.
the first three (118-120) are the solutions of equations (§87), 16 {(;:rembo] ;}Z;’la;y:;]%ﬁlggg)sm (1994)

(88) and (89). 17. Akers David, Int ] Theor Phys, 33 (1994) 1817.
18. A YuIgnatiev & G C Joshi, Phys Rev D, 53 (1996) 984.
The finite energy for this case also from eqn. (85) on 19. JP Gauntlett, Nucl Phys B, 411 (1994) 443.
substituting equation (99) and R, =0 and accommodating 20. K Benson& I Chol, Phys Rev D, 64 (2001) 065026.
theboundary conditions (86) becomes 21. fzgol(jzoughton ] & E ] Weinberg , Phys Rev D, 66 (2002)
167 301 22.  E KyriakopoulosE, IL Nuovo Cimento, 52A (1979) 23.
m= _2ﬁA cosh? 0, + > By (123) 23. F A Bais & HA Weldon, Phys Rev Lett, 41 (1978) 601.
e g 24. N Cabbibo & E Ferrari “Quantum Electrodynamics with
Dirac monopoles” Nuovo Cimento, 23 (1962) 1147.
The electric and magnetic charges for this case are 25. M Gell-Mann & Y Neeman, The Eightfold Way (New York)
N.Y. 1964.
2sinh 6 2 26. P W Higgs, Phys Lett, 12 (1964) 232.
qe=F——+ 3 (124a) 27. PW Hgﬁs, Phyys Lett, 13 ((1964))508,
28. A Chakrabarti, Ann Inst H Poincare, 23 (1975) 235.
29. ZHorvath & LPalla, Phys Rev D, 14 (1976) 1711.
q, = 2 (124b) 30. F Rahaman, Indian] Pureand Appl Phys, 40(8) (2002) 556.
e 31. V.Singh, B.V. Tripathi, and D. C. Joshi “Euclidian Spce
Dyon Solutions” Indian J. Pure & Appl. Phys. 43, 157 (2005).
Conclusion 32. V.Singh, B.V. Tripathi, and D. C. Joshi “Stability Analysis of
) . ) ) ] Dyonsolutions in SU(3)®SU(3) Gauge Theory” Indian J.
Using a Cabbibo-Ferrari type non-Abelian field Pure & Appl. Phys. 44, 567 (2006)

tensor, the dyon-solutions have been obtained in the

temporal gauge. Introducing the quantities & and Bin
terms of Gell-Mann matrices, three-vectors

then been expressed in terms of these three-vectors which
results in the reduction of second order non-linear field
equations into the first order non-linear equations whose
solutions employing the self-duality conditions lead to
Euclidean space dyon solutions whose energy has been
shown to be finite. The distinguishing feature of the
obtained solutions is the use of Cabbibo-Ferrari type non-
Abelian field tensor and the temporal gauge.
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