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Dyon Solutions in Non-Temporal SU(3)SU(3) Gauge 
Vinod Singh and D C Joshi* 

Abstract - Employing the Cabbibo–Ferrari type non- Abelian f ield tensor we consider the 
SU(3)SU(3)

gauge theory under the non-temporal gauge 

conditions and show that the obtained solutions are dyonic and have f inite energy. 

Index Term: Dyon Solutions, Non-Abilian Field Tensor, Gauge Field Theory 

——————————      —————————— 

Introduction 

In 1930s Dirac1 advanced the idea that isolated magnetic 

poles might exist. The idea of magnetic monopoles got a 

boost in 1970s when ’t Hooft2 and Polyakov3 showed that in 

gauge field theories in which the symmetry group is 

spontaneously broken possess classical solutions with the 

natural interpretation of magnetic monopoles. Soon the 

Julia and Zee’s4 conjecture was seen as the non-Abelian 

analogue of Schwinger’s Abelian dyons5. The interest on 

monopoles and dyons generated by Dirac1, ’t Hooft2, 

Polyakov3 and Julia and Zee4 has remained undiminished 

and extensive theoretical and experimental works on the 

related topics have been undertaken6-21, 30. 

Since, the solutions which were interpreted as magnetic 

monopoles were originally found in SO(3) gauge group and 

this group being small for unifying electromagnetic  and  

weak  interactions, larger  gauge  groups  like SU(3) were 

explored8-12, 22, 23 . A key factor of such theories is the twin 

combination of the choice of gauge and choice of gauge 

field tensor. Theories have in general followed the 

approach of Julia and Zee4 and employed usual Yang-Mills 

type field tensor and have used temporal gauge conditions 

to arrive at monopole solutions and obtained dyon 

solutions in non-temporal gauge. 

 In 1960s, Cabbibo and Ferrari24 developed a two 

potential field tensor for developing a theory of Abelian 

dyons and Yang Mills type field tensor continued to be 

used for dyon solutions in non-Abelian gauge theories. 
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 One of the authors (DCJ) has in earlier papers11 developed 

a Cabbibo-Ferrari24 type field tensor for non-Abelian fields 

and employed12-13 it on non-Abelian gauge theories with 

electric and magnetic sources. Using the same field tensor 

and the Kyriakopoulos22 technique we show in the previous 

paper that the dyon solutions be obtained in the temporal 

gauge (31). The Kyriakopoulos (22) technique under the 

temporal gauge conditions reduced the gauge field 

equations into the first order differential equations whose 

solutions depicted a set of dyon solutions. Extending the 
analysis in the present paper we examine the SU(3)SU(3)  

gauge under the non- temporal gauge conditions and find 

that in this case too we obtain the finite energy dyon 

solutions but unlike the previous case they emerge as the 

solutions of second order differential equations. The paper 

has been divided into six sections. Section 2 defines the 

Lagrangian density, the gauge group of the theory, field 

equations and matrix notation .The ansatz for obtaining the 

solutions has been presented in section 3. The solutions 

have been shown to have finite energy in section 4.the 

adjoining solutions be obtained in section 5. That the 

obtained solutions belong to electric and magnetic charges 

has been shown in section 6 to which then follow the 

concluding remarks. 

2. The Gauge Group and the Lagrangian Density 

 In this section we briefly recapitulate the steps from the 

previous paper (31). 

The system whose gauge group is SU(3)SU(3) , is 

described by the Lagrangian density 
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in which gauge fields aA
 and aB

 transform as 
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where U  is a gauge function 

 aaTiexpU      (4) 

with a  the real functions of space-time and aT  

representing the group generators of  3SU  group obeying 
cabcba Tfi]T,T[      (5) 

The abcf are the  3SU  structure constants with a, b, c 

running from 1 to 8. 
2

T
a
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 , where a (a = 1, 2, … 8) are 

eight Gell-Mann matrices25. 

The    in the Lagrangian density (1) indicates the 

products in which the fields have been assumed mutually 

non-interacting. As a result of this assumption the mutual 

interaction terms, i.e. the cross-terms, disappear leaving 
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where 
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and aa B
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babc1 AfeD       (12) 

 babc2 BfgD       (13) 

and a
g
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a      (14) 

The covariant derivative aD   which expressed as 

   a
g
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e

1a DDD      (15) 

transform as 

 aa )D(U)D(      (16) 

The potential energy  aaV   in the Lagrangian 

density (1) describe the self interaction of field  
a

φ and  has 

the form 
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in which η  and   are real constants with 1 . The 

fields 
a

φ  may denote the Higgs26, 27 triplet fields. 

The Euler-Lagrange variations of the Lagrangian 

density (1) with respect to aA
, aB

, a
e  and a

g  lead to the 

field equations 
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 Introducing the notation 

aaTAeA        (22a) 

and aaTBgB       (22b) 

and also express the Higgs field φ as 
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2
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 with a (a = 1,2,…..,8) the Gell-Mann 

matrices (25), we may express the field equations (18) to 

(21) in matrix notation as 
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respectively. It is obvious from the above that 11 

3. The Ansatz 

 In the previous paper 31 the gauge field obeyed the 

temporal gauge conditions and here temporal parts A and 

B do not vanish we were required to have the ansatz 28 
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232221 xxxr  , x1, x2 and x3 being the 

components of distance three-vector. We also introduce the 
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where BABA U,U,T,T  BABA S,R,S,R are purely r  

dependent. 

The ansatz for the Higgs fields  ge  as before28, 29 
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where the coefficients N  and M  too are purely r-

dependent. We also introduce the vector 

4. Finite energy Solutions. 

 In earlier paper defined31 
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with similar relations with ge  and BA . 

As shown in the following subsection, the ansatz (33), 

(34), (37) and (38) allow us to write the field equations (18)–

(21) in terms of field equations without  3SU  indices. 

We use the same ansatz and notations as used in the 

earlier paper (30) for temporal gauge. We also employ the 

ansatz for non temporal gauge(22) 

we can express the space-time component of A and 
B

~
 as(28) 
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Now we look at the field equations 31 (23) to(26) and 

separate their space and time components. Using 

eqyuations (51) and (56) the respective space and 

timecomponents of (23) and (24) can jbe expressed as  

0]D,[i]A[i)AA( e
1

e0,0 
 

 (61) 

0]D,[i]B[i)AB( g
2

g0,0 
 

   (62) 

0]AA[i
000


 

    (63) 

and 0]B
~

B[i ~~~
000

 


   (64) 

where 


and


 are (39) and (40) for the space and time 
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  Now we first look at the set of eqs. (61), (62) and 

(65) that contain the space parts A
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 of the gauge field 
A . 

Using eqs (34) in these equations we can calculate the 

individual terms as 
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4

AAAAAA
2

e
1

e
1

eeeee

eeeee



      (69) 

Equation (61) is satisfied if the coefficients of 

 ˆandˆ,U,T AA


are zero that gives   the system of nonlinear 

differential equations 

   
  0MNU4M4NTSUR4

S4RT1U7TTTr

eeA

2

e

2

eAAAA

2

A

2
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2

A

2

AAA
2







 (70) 
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   
  0MNT4M4NUSRT4

S4RU1UT7UUr

eeA

2

e

2

eAAAA

2

A

2

AA

2

A

2

AAA
2







 (71) 

  0SUT8UTR2Rr AAA

2

A

2

AAA
2    (72) 

  0RUT6UTS2Sr AAA

2

A

2

AAA
2    (73) 

  0MUT8UTN2Nr
eee AA

2

A

2

A
2  

  (74) 

  0NUT6UTM6Mr
eee AA

2

A

2

A
2  

  (75) 

Similarly eqs (62),(64) and (66) give the system of 

nonlinear differential equations 

 

   
  0MNU4M4NTSUR4

S4RT1U7TTTr

ggB

2

g

2

gBBBB

2

B

2

BB

2

B

2

BBB
2







(76) 

   
  0MNT4M4NUSRT4

S4RU1UT7UUr

ggB

2

g

2

gBBBB

2

B

2
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2

B

2
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2







(77) 

  0SUT8UTR2Rr BBB

2

B

2

BBB
2     (78) 

  0RUT6UTS2Sr BBB

2

B

2

BBB
2     (79) 

  0MUT8UTN2Nr
ggg BB

2

B

2

B
2     (80) 

  0NUT6UTM6Mr
ggg BB

2

B

2

B
2     (81) 

above system of second order non-linear differential 

equations (70) to(81) belong to the non-temporal gauge 

conditions 0Aa
0  and 0Ba

0   and the energy for this case is 

calculated by using the energy- momentum tensor T  4 as 

   a
0

a
0

a
i0

a
i0

a
i0

a
i0

3003 DDG
~

G
~

GGxdTxdm


(82) 

Using eqs. (9) and (10) the above expression yields 

 

 
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



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3
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1
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2
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

   (83)) 

Using eqn.(25)31  we get 

 






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
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      (84) 

thus our system in the gauge 0Aa
0  and 0Ba

0  , is now 

described by the second order non-linear differential 

equations (70) to (81) and the energy of this system is 

expressed by eqn (95) . However, the energy diverges 

at 0r .  Therefore , to avoid the singularity at 0r , we 

impose following boundary conditions ……..In order to 

avoid the terms becoming singular as 0r , the following 

boundary conditions are required to be obeyed 

   
11

10rB
1

0rA

BA

rT,rT

0U10U







  


  (86a)  

or 

   0T10T

rU,rU

BA

1
10rB

1

0rA
1



   





   (86b) 

where 1, and 1, are constants with 0, 1  . Thus 

the energy (85) becomes finite when its parameters obey  
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the boundary conditions (86). When these boundary 

conditions are obeyed by the solutions of eqs (70) to (81), 

the same would be the 0Aa
0  and 0Ba

0  ,the finite energy 

solutions. Thus our aim now is to obtain the solutions of 

second order differential eqs (70) to (81) which obey 

eqn.(86). For the above purpose if we let us put 

0MMFFTT
geBABA   , we find that out of the 

twelve equations only the following six remain  

  01RNUUUr 2

A

2

e

2

AAA
2  

  

 (87) 

0UR2Rr 2

AAA
2      (88) 

0UN2Nr 2

A
2

ee
      (89) 

  01RNUUUr 2

B

2

g

2

BBB
2  

  (90) 

0UR2Rr 2

BBB
2      (91) 

0UN2Nr 2

B
2

gg
 

    (92) 

 It is interesting to note that the first three equation (87), 

(88) and (89) exactly match the Prasad and Sommerfield 

equations of motion.32  Similar matching exists for the eqs. 

(90) (91) and (92) as well  and the solutions of these 

equation comes out as 32  

rsinh

r
U

A

A
A




     (93)     (93) 

 1rcothrcoshN AAAe
     (94)   (94) 

 1rcothrsinhR AAAA     (95)   (95) 

rsinh

r
U

B

B
B




     (96) 

 1rcothrcoshN BBg
 B    (97) 

 1rcothrsinhR BBBB     (98) 

0SSMMTT BAφφBA ge
   (99) 

where B andABA  are arbitrary constants . The finite 

energy corresponding to these solutions is obtained by 

substituting (93) to (98) above solutions when put in (85) 

give 

   
dr

r

NU
4

g

4
dr

r

NU
4

e

4
m

2

2
B

0
22

2
A

0
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










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B2A

2
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cosh
g

16
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e

16






  (100) 

4. Electric and Magnetic Charge 

 In order to show that the obtained solutions (93) to 

(99) having the finite energy (100), are dyon solutions in 

non- temporal gauge, we shall calculate the electric and 

magnetic charges. For that purpose we introduce the unit 

vectors a
eφ̂  and a

gφ̂  defined by28 

  r2

ˆ

φφ

φ
φ̂

a

a
g,e

a
g,e

a
g,ea

g,e
2
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
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From previous paper 31 

a
i

jka
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e

1
A

2

1
     (102a) 

and a
i

jka

ijk

~

g

1
B

2

1
     (102b) 

We introduce the field 22 

a
0

a
i0

e

1
A        (103a) 

and a
i

a
i0

~

g

1
B       (103b) 

 The electric charge eq  may now be calculated by 

using eqs. (102b) and (103a) ) as 

 


 i
a

i0
a
ee dsGφ̂

4

1
q     (104) 

where i0G can be had from eqn (2) and ids denote the 

surface element of the surface at infinity which is also the 

boundary of the static fields.  
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The magnetic charge likewise is obtained  

 
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 








 sdx

r

RRr

g4

3
sdx

r

)U1(

e2

1
3

B
2
A


B  

g4

sinh3

e

2 B     (106) 

 Thus the obtained solutions are dyonic 

solutions in temporal gauge with electric 

charge
g

2

e

sinh2 A 


  of and magnetic charge 

of
g4

θsinh3

e

2 B . 

5. Adjoining Solutions 

Equations (93) to (98) provide the non-temporal gauge 

solutions in which both a
0A  and a

0B  were non-vanishing. 

However, remaining in the realm of non-temporal gauge 

conditions we can have particular case of  (a) 0Aa
0   and 

0Ba
0   and (b) 0Aa

0  and 0Ba
0  . Adopting the procedure 

of previous sections, we show in the following that in these 

particular cases of temporal gauge too, the obtained 

solutions though are finite energy dyonic but are different 

from the previous section. 

Case (a) 0Aa
0  , 0Ba

0   

The vanishing of a
0A  implies the vanishing of AR and 

AS , accordingly the field equations (87)-(75) become 

  01NUUUr 2

e

2

AAA
2      (107) 

0UN2Nr 2

A
2

ee
      (108) 

rest eqs.(91) – (94) remain same.  

Since, the second order differential equations 107) to 

(108) again match with those of Prasad and Sommerfield32, 

the solutions in this case of 0Aa
0  , 0Ba

0   are the solutions 

of field equations (107), (108) and (90)-(92) which are 

written as 

rsinh

r
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A

A
A




     (109)     (109) 

 1rcothrN AAe
     (110)    (110) 

rsinh

r
U

B

B
B




     (111)     (111) 

 1rcothrcoshN BBg
 B     (112) 

 1rcothrsinhR BBBB     (113) 

 The energy of these solutions can also be calculated 
from eqn. (85) by putting 

AA S0R  , which will also 

admit the boundary conditions (86) resulting in the 

following expression of energy that would be finite 

 

B
2

B2A2

g
2
ig

2
ijkjki0i0

3

2

jkjk

3

2

cosh
g

16

e

32

DDBB
4

3
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8

15
xdTr

g

1

AA2xdTr
e
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m
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
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





















(114) 

The electric and magnetic charges for this case can also 

be calculated as 

g

2
qe        (115a) 

g4

sinh3

e

2
qg

B      (115b) 

Thus in the gauge 0Aa
0  , 0Ba

0  , we have finite energy 

dyon solutions (109)-(113) with finite energy (114) and 

dyon charges (115). 

Case (b) 0A
a
0  , 0B

a
0   

In this case BR and BS  vanish. The field equation (87)-

(89) remain same, whereas eqn. (90)-(92) after substituting 

BB S0R  reduce to following two equations 

  01NUUUr 2

g

2

BBB
2  

   (116) 

0UN2Nr 2

B
2

gg
      (117) 

Corresponding to 0Aa
0  , we shall have three equations 

viz. (87), (88) and (89). The solutions of these five equations 

yields 

rsinh

r
U

A

A
A




     (118)    (118) 

 1rcothrcoshN AAAe
    (119)     (119) 

 1rcothrsinhR AAAA     (120)    (120) 

rsinh

r
U

B

B
B




     (121) 

 1rcothrN BBg
    (122) 
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where equations (121) and (122) are the Prasad-

Sommerfield32 solutions of equations (116) and (117) and 

the first three (118-120) are the solutions of equations (87), 

(88) and (89). 

The finite energy for this case also from eqn. (85) on 

substituting equation (99) and 0RB   and accommodating 

the boundary conditions (86) becomes 

B2A
2

A2 g

32
cosh

e

16
m 





   (123) 

The electric and magnetic charges for this case are 

g

2

e

sinh2
q A

e 


     (124a) 

e

2
qg       (124b) 

Conclusion 

 Using a Cabbibo-Ferrari type non-Abelian field 

tensor, the dyon-solutions have been obtained in the 

temporal gauge. Introducing the quantities ̂  and ̂ in 

terms of Gell-Mann matrices, three-vectors 

T,S,R,Q,P


and U


 have been defined. The gauge fields have 

then been expressed in terms of these three-vectors which 

results in the reduction of second order  non-linear field 

equations into the first order non-linear equations whose 

solutions employing the self-duality conditions lead to 

Euclidean space dyon solutions whose energy has been 

shown to be finite. The distinguishing feature of the 

obtained solutions is the use of Cabbibo-Ferrari type non-

Abelian field tensor and the temporal gauge. 
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